Quantitative trait loci mapping for kernel row number using chromosome segment substitution lines in maize.

نویسندگان

  • F Li
  • H T Jia
  • L Liu
  • C X Zhang
  • Z J Liu
  • Z X Zhang
چکیده

Unveiling the genetic architecture of grain yield and yield-related traits is useful for guiding the genetic improvement of crop plants. Kernel row number (KRN) per ear is an important yield component, which directly affects the grain yield of maize. In this study, we constructed a set of 130 chromosome segment substitution lines (CSSLs), using Nongxi531 as the donor parent and H21 as recipient parent, by continuous backcrossing and selfing. In total, 11 quantitative trait loci (QTL) were detected for KRN by stepwise regression under 3 environmental settings, with 9.87-19.44% phenotypic variation being explained by a single QTL. All 11 QTL were also detected by single-factor ANOVA across the 3 environments tested. Of these 11 QTL, 4 were identified across more than 2 environments, indicating that they are authentically expressed under different environments to control the formation and development of KRN in female maize inflorescences. The CSSLs harbored a greater number of favorable alleles for KRN compared to the H21 line, and could be employed as improved H21 lines in maize breeding programs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KRN4 Controls Quantitative Variation in Maize Kernel Row Number

Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantita...

متن کامل

Identification and Mapping of Quantitative Trait Loci Associated with Salinity Tolerance in Rice (Oryza Sativa) Using SSR Markers

Salinity stress is one of the most widespread soil problems next to drought, in rice growing areas. ReducingSodium (Na+), while maintaining Potassium (K+) uptake in rice are traits that would aid in salinity tolerance.Therefore, the identification of quantitative trait loci (QTLs) associated with those for Na+ and K+uptake, will enable breeders to use marker-assisted selection...

متن کامل

Quantitative Trait Loci for some of Behavior and Performance Traits on Chromosome 4 of Japanese Quail

The current study was conducted to identify the quantitative trait locus (QTL) for the body weight at age 1, 7, 14, 21 and 28 days and daily gain at age 0-1, 1-2, 2-3 and 3-4 weeks, slighter carcass weight and tonic immobility in Japanese quail. Two divergently lines of wild and white Japanese quail which maintained in the Animal Science Research Center of the Shahid Bahonar University of Kerma...

متن کامل

Expanding Maize Genetic Resources with Predomestication Alleles: Maize-Teosinte Introgression Populations.

Teosinte ( subsp. H. H. Iltis & Doebley) has greater genetic diversity than maize inbreds and landraces ( subsp. ). There are, however, limited genetic resources to efficiently evaluate and tap this diversity. To broaden resources for genetic diversity studies in maize, we developed and evaluated 928 near-isogenic introgression lines (NILs) from 10 teosinte accessions in the B73 background. Joi...

متن کامل

Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels.

The maize (Zea mays) kernel plays a critical role in feeding humans and livestock around the world and in a wide array of industrial applications. An understanding of the regulation of kernel starch, protein, and oil is needed in order to manipulate composition to meet future needs. We conducted joint-linkage quantitative trait locus mapping and genome-wide association studies (GWAS) for kernel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2014